Abstract
Monogenic hypertension is rare and caused by genetic mutations, but whether factors associated with mutations are disease-specific remains uncertain. Given two factors associated with high mutation rates, we tested how many previously known genes match with (i) proximity to telomeres or (ii) high adenine and thymine content in cardiovascular diseases (CVDs) related to vascular stiffening. We extracted genomic information using a genome data viewer. In human chromosomes, 64 of 79 genetic loci involving >25 rare mutations and single nucleotide polymorphisms satisfied (i) or (ii), resulting in an 81% matching rate. However, this high matching rate was no longer observed as we checked the two factors in genes associated with essential hypertension (EH), thoracic aortic aneurysm (TAA), and congenital heart disease (CHD), resulting in matching rates of 53%, 70%, and 75%, respectively. A matching of telomere proximity or high adenine and thymine content projects the list of loci involving rare mutations of monogenic hypertension better than those of other CVDs, likely due to adoption of rigorous criteria for true-positive signals. Our data suggest that the factor–disease matching rate is an accurate tool that can explain deleterious mutations of monogenic hypertension at a >80% match—unlike the relatively lower matching rates found in human genes of EH, TAA, CHD, and familial Parkinson’s disease.
Funder
National Institutes of Health
WV-CTSI
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献