An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals

Author:

Zhang Heng,Pan Shuguo,Sheng Chuanzhen,Gan XingliORCID,Yu Baoguo,Huang LuORCID,Li Yaning

Abstract

High-precision navigation and positioning technology for indoor areas has become one of the research hotspots in the current navigation field. However, due to the complexity of the indoor environment, this technology direction is also one of the research difficulties. At present, our common indoor positioning methods are WIFI, Bluetooth, LED, ultrasound and pseudo satellite. However, due to the problem of inaccurate direct or indirect ranging, the positioning accuracy is usually affected, which makes the final application difficult to achieve. In order to avoid the ranging limitations of the existing methods, a new dual-frequency entanglement constraint (DFEC) ranging method based on homologous base station is proposed in this paper. The relationship between the homologous characteristics of dual-frequency signals and the phase relationship within the cycle is used to estimate the current carrier phase adjustment the true value of the cycle count is used to get rid of the constraints of the ranging conditions and improve the ranging accuracy. In order to verify the feasibility of this method, the wired environment test and the typical characteristic points of wireless environment are tested and analyzed respectively. The analysis results show that in the wired environment, the transmitting base station and the receiving terminal will introduce a ranging error of one wavelength; in the wireless environment, due to the influence of spatial noise and multipath, the error of the estimation of the whole cycles of the ranging value increases significantly. And this phenomenon is most obvious especially in the region where the signal is shaded, but the error estimate that satisfies ± 1 wavelength still accounts for 90%. Based on this, we conduct multiple observation data collection at five typical feature points, and used existing MATLAB positioning algorithms to conduct positioning error tests. The analysis found that under this error condition, the positioning accuracy was about 0.6 m, and 93% of the points met the 1-m positioning accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference21 articles.

1. Multi-Radio Data Fusion for Indoor Localization Using Bluetooth and WiFihttps://www.semanticscholar.org/paper/Multi-radio-Data-Fusion-for-Indoor-Localization-and-Ahmed-Arablouei/886075d4ec08dff98a93ecd32ca358e4e7ce7b90

2. A Novel Indoor Positioning Algorithm for Wireless Sensor Network Based on Received Signal Strength Indicator Filtering and Improved Taylor Series Expansion

3. Indoor WiFi Positioning;Sharp,2018

4. WiFi-based indoor positioning

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Pseudolite Indoor Wide-Area Networking Technology Based on Signal Multilevel Features;Wireless Communications and Mobile Computing;2022-08-21

2. Indoor location methods of fire personnel based on GPS and sensor network;4th International Conference on Informatics Engineering & Information Science (ICIEIS2021);2022-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3