Recent Development on the Electrochemical Detection of Selected Pesticides: A Focused Review

Author:

Noori Jafar SafaaORCID,Mortensen John,Geto AlemnewORCID

Abstract

Pesticides are heavily used in agriculture to protect crops from diseases, insects, and weeds. However, only a fraction of the used pesticides reaches the target and the rest slips through the soil, causing the contamination of ground- and surface water resources. Given the emerging interest in the on-site detection of analytes that can replace traditional chromatographic techniques, alternative methods for pesticide measuring have recently encountered remarkable attention. This review gives a focused overview of the literature related to the electrochemical detection of selected pesticides. Here, we focus on the electrochemical detection of three important pesticides; glyphosate, lindane and bentazone using a variety of electrochemical detection techniques, electrode materials, electrolyte media, and sample matrix. The review summarizes the different electrochemical studies and provides an overview of the analytical performances reported such as; the limits of detection and linearity range. This article highlights the advancements in pesticide detection of the selected pesticides using electrochemical methods and point towards the challenges and needed efforts to achieve electrochemical detection suitable for on-site applications.

Funder

H2020 Fast Track to Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference94 articles.

1. Freshwater Challenges of South Africa and its Upper Vaal River;Du Plessis,2017

2. la Contamination of surface waters by agricultural pesticides;Kostovetskiĭ;Gig. Sanit.,1973

3. Cleaning contaminated water by gravity flotation

4. Gold nanoparticles for cleaning contaminated water

5. Partitioning, Aqueous Solubility, and Dipole Moment Data for cis- and trans-(4-Methylcyclohexyl)methanol, Principal Contaminants of the West Virginia Chemical Spill

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3