Fostering Environmental Awareness with Smart IoT Planters in Campuses

Author:

Tabuenca BernardoORCID,García-Alcántara Vicente,Gilarranz-Casado Carlos,Barrado-Aguirre Samuel

Abstract

The decrease in the cost of sensors during the last years, and the arrival of the 5th generation of mobile technology will greatly benefit Internet of Things (IoT) innovation. Accordingly, the use of IoT in new agronomic practices might be a vital part for improving soil quality, optimising water usage, or improving the environment. Nonetheless, the implementation of IoT systems to foster environmental awareness in educational settings is still unexplored. This work addresses the educational need to train students on how to design complex sensor-based IoT ecosystems. Hence, a Project-Based-Learning approach is followed to explore multidisciplinary learning processes implementing IoT systems that varied in the sensors, actuators, microcontrollers, plants, soils and irrigation system they used. Three different types of planters were implemented, namely, hydroponic system, vertical garden, and rectangular planters. This work presents three key contributions that might help to improve teaching and learning processes. First, a holistic architecture describing how IoT ecosystems can be implemented in higher education settings is presented. Second, the results of an evaluation exploring teamwork performance in multidisciplinary groups is reported. Third, alternative initiatives to promote environmental awareness in educational contexts (based on the lessons learned) are suggested. The results of the evaluation show that multidisciplinary work including students from different expertise areas is highly beneficial for learning as well as on the perception of quality of the work obtained by the whole group. These conclusions rekindle the need to encourage work in multidisciplinary teams to train engineers for Industry 4.0 in Higher Education.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3