The Impact of Training Data Sequence on the Performance of Neuro-Fuzzy Rainfall-Runoff Models with Online Learning

Author:

Chang Tak,Talei Amin,Chua Lloyd,Alaghmand SinaORCID

Abstract

The learning algorithms in many of conventional Neuro-Fuzzy Systems (NFS) are based on batch or global learning where all parameters of the fuzzy system are optimized off-line. Although these models have frequently been used, they suffer from a reduced flexibility in their architecture as the number of rules need to be predefined by the user. This study uses a Dynamic Evolving Neural Fuzzy Inference System (DENFIS) in which an evolving, online clustering algorithm, the Evolving Clustering Method (ECM), is implemented. This study focused on evaluating the performance of this model in capturing the rainfall-runoff process and rainfall-water level relationship. The two selected study catchments are located in an urban tropical and in a semi-urbanized area, respectively. The first catchment, Sungai Kayu Ara (23.22 km2), is located in Malaysia, with 10-min rainfall-runoff time-series from which 30 major events are used. The second catchment, Dandenong (272 km2), is located in Victoria, Australia, with daily rainfall and river stage (water level) data from which 11 years of data is used. DENFIS results were then compared with two groups of benchmark models: a regression-based data-driven model known as the Autoregressive Model with Exogenous Inputs (ARX) for both study sites, and physical models Hydrologic Engineering Center–Hydrologic Modelling System (HEC–HMS) and Storm Water Management Model (SWMM) for Sungai Kayu Ara and Dandenong catchments, respectively. DENFIS significantly outperformed the ARX model in both study sites. Moreover, DENFIS was found comparable if not superior to HEC–HMS and SWMM in Sungai Kayu Ara and Dandenong catchments, respectively. A sensitivity analysis was then conducted on DENFIS to assess the impact of training data sequence on its performance. Results showed that starting the training with datasets that include high peaks can improve the model performance. Moreover, datasets with more contrasting values that cover wide range of low to high values can also improve the DENFIS model performance.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3