Effects of a Fishing Ban on the Ecosystem Stability and Water Quality of a Plateau Lake: A Case Study of Caohai Lake, China

Author:

Yang Tangwu12ORCID,Li Dianpeng1,Xu Qing1,Zhu Yijia2,Zhu Zhengjie12,Leng Xin1,Zhao Dehua1,An Shuqing12

Affiliation:

1. School of Life Sciences, Nanjing University, Nanjing 210046, China

2. Nanjing University Research Institute (Changshu) Co., Ltd., Suzhou 215500, China

Abstract

Long-term fishing bans have spurred extensive debate regarding their impacts on ecosystem structures, functions, and water qualities. However, data on the effects of specific changes induced by fishing bans on ecosystem structures, functions, and water qualities in lakes are still lacking. Therefore, the present study addresses this knowledge gap by employing an Ecopath model to assess alterations in an ecosystem’s structure and function before (2011) and after (2021) the implementation of the fishing ban in Caohai Lake and its association with changes in water quality. (1) We observed a substantial reduction in the area covered by submerged aquatic vegetation after the ban, amounting to a 65% decrease in coverage compared with that before the ban, and a 60% reduction in the total ecosystem’s biomass. (2) Following the ban, the number of fish species increased from 7 to 14, and this was accompanied by a rise in the fish biomass from 14.16 t·km−2 to 25.81 t·km−2; a 4.5-fold increase in the total system consumption was observed, signifying accelerated energy and material flows within the ecosystem. (3) The fishing ban exhibited no significant impact on the total nitrogen concentration; however, it significantly reduced the water’s transparency and increased the total phosphorus, ammonia nitrogen, chemical oxygen demand, and chlorophyll contents (p < 0.05). This shift in nutrient dynamics fostered a transformation from a macrophyte-dominant lake to an alga-dominant lake. The fish abundance and diversity increase in closed-type macrophytic lakes, thereby accelerating energy and material flows within food webs. These findings present novel insights into the effective policy management of fishing bans within the Yangtze River Basin, thus enhancing our understanding of sustainable lake ecosystem management.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3