Human Behavior Recognition via Hierarchical Patches Descriptor and Approximate Locality-Constrained Linear Coding

Author:

Liu Lina12,Wang Kevin I-Kai2ORCID,Tian Biao3,Abdulla Waleed H.2ORCID,Gao Mingliang1ORCID,Jeon Gwanggil14ORCID

Affiliation:

1. College of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China

2. Department of Electrical, Computer, and Software Engineering, Faculty of Engineering, The University of Auckland, 20 Symonds St, Auckland 1010, New Zealand

3. Science and Technology Cooperation and Exchange Center of Zouping, Zouping 256200, China

4. Department of Embedded Systems Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

Human behavior recognition technology is widely adopted in intelligent surveillance, human–machine interaction, video retrieval, and ambient intelligence applications. To achieve efficient and accurate human behavior recognition, a unique approach based on the hierarchical patches descriptor (HPD) and approximate locality-constrained linear coding (ALLC) algorithm is proposed. The HPD is a detailed local feature description, and ALLC is a fast coding method, which makes it more computationally efficient than some competitive feature-coding methods. Firstly, energy image species were calculated to describe human behavior in a global manner. Secondly, an HPD was constructed to describe human behaviors in detail through the spatial pyramid matching method. Finally, ALLC was employed to encode the patches of each level, and a feature coding with good structural characteristics and local sparsity smoothness was obtained for recognition. The recognition experimental results on both Weizmann and DHA datasets demonstrated that the accuracy of five energy image species combined with HPD and ALLC was relatively high, scoring 100% in motion history image (MHI), 98.77% in motion energy image (MEI), 93.28% in average motion energy image (AMEI), 94.68% in enhanced motion energy image (EMEI), and 95.62% in motion entropy image (MEnI).

Funder

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3