Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils

Author:

Khan KaffayatullahORCID,Ashfaq MohammedORCID,Iqbal MudassirORCID,Khan Mohsin Ali,Amin Muhammad NasirORCID,Shalabi Faisal I.ORCID,Faraz Muhammad Iftikhar,Jalal Fazal E.ORCID

Abstract

Rapid industrialization is leading to the pollution of underground natural soil by alkali concentration which may cause problems for the existing expansive soil in the form of producing expanding lattices. This research investigates the effect of stabilizing alkali-contaminated soil by using fly ash. The influence of alkali concentration (2 N and 4 N) and curing period (up to 28 days) on the unconfined compressive strength (UCS) of fly ash (FA)-treated (10%, 15%, and 20%) alkali-contaminated kaolin and black cotton (BC) soils was investigated. The effect of incorporating different dosages of FA (10%, 15%, and 20%) on the UCSkaolin and UCSBC soils was also studied. Sufficient laboratory test data comprising 384 data points were collected, and multi expression programming (MEP) was used to create tree-based models for yielding simple prediction equations to compute the UCSkaolin and UCSBC soils. The experimental results reflected that alkali contamination resulted in reduced UCS (36% and 46%, respectively) for the kaolin and BC soil, whereas the addition of FA resulted in a linear rise in the UCS. The optimal dosage was found to be 20%, and the increase in UCS may be attributed to the alkali-induced pozzolanic reaction and subsequent gain of the UCS due to the formation of calcium-based hydration compounds (with FA addition). Furthermore, the developed models showed reliable performance in the training and validation stages in terms of regression slopes, R, MAE, RMSE, and RSE indices. Models were also validated using parametric and sensitivity analysis which yielded comparable variation while the contribution of each input was consistent with the available literature.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3