Author:
Yang Xue,Li Xian,Hu Yongyou,Cheng Jianhua,Chen Yuancai
Abstract
In this work, an electrochemical filter using an electrospun carbon nanofiber membrane (ECNFM) anode fabricated by electrospinning, stabilization and carbonization was developed for the removal of antibiotic tetracycline (TC). ECNFM with 2.5 wt% terephthalic acid (PTA) carbonized at 1000 °C (ECNFM-2.5%-1000) exhibited higher tensile stress (0.75 MPa) and porosity (92.8%), more graphitic structures and lower electron transfer resistance (23.52 Ω). Under the optimal condition of applied voltage 2.0 V, pH 6.1, 0.1 mol L−1 Na2SO4, initial TC concentration 10 ppm and membrane flux 425 LMH, the TC removal efficiency of the electrochemical filter of ECNFM-2.5%-1000 reached 99.8%, and no obvious performance loss was observed after 8 h of continuous operation. The pseudo-first-order reaction rate constant in flow-through mode was 2.28 min−1, which was 10.53 times higher than that in batch mode. Meanwhile, the energy demand for 90% TC removal was only 0.017 kWh m−3. TC could be converted to intermediates with lower developmental toxicity and mutagenicity via the loss of functional groups (-CONH2, -CH3, -OH, -N(CH3)2) and ring opening reaction, which was mainly achieved by direct anodic oxidation. This study highlights the potential of ECNFM-based electrochemical filtration for efficient and economical drinking water purification.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献