Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery

Author:

Marcinkowska-Ochtyra AdrianaORCID,Zagajewski BogdanORCID,Raczko EdwinORCID,Ochtyra AdrianORCID,Jarocińska AnnaORCID

Abstract

Mapping plant communities is a difficult and time consuming endeavor. Methods relying on field surveys deliver high quality data but are usually limited to relatively small areas. In this paper we apply airborne hyperspectral data to vegetation mapping in remote and hard to reach areas. We classified 22 vegetation communities in the Giant Mountains on 3.12-m Airborne Prism Experiment (APEX) hyperspectral images, registered in 288 spectral bands (10 September 2012). As the classification algorithm, Support Vector Machines (SVM) was used. APEX data were corrected geometrically and atmospherically, and three dimensionality reduction methods were performed to select the best dataset. As reference we used a non-forest vegetation map containing vegetation communities of Polish Karkonosze National Park from 2002, orthophotomap and field surveys data from 2013 to 2014. We obtained the post-classification maps of 22 vegetation communities, lakes and areas without any vegetation. Iterative accuracy assessment repeated 100 times was used to obtain the most objective results for individual communities. The median value of overall accuracy (OA) was 84%. Fourteen out of twenty-four classes were classified of more than 80% of producer accuracy (PA) and sixteen out of twenty-four of user accuracy (UA). APEX data and SVM with the use of iterative accuracy assessment are useful for the mountain communities classification. This can support both Polish and Czech national parks management by giving the information about diversity of communities in the whole transboundary area, helping with identification especially in changing environment caused by humans.

Funder

Ministerstwo Nauki i Szkolnictwa Wyzszego

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. IMPACT OF ATMOSPHERIC CHANGES ON HIGH MOUNTAIN VEGETATION

2. Strefy przejścia między układami roślinnymi-analiza wieloskalowa (na przykładzie roslinności górskiej);Kozłowska,2008

3. Zbiorowiska roślinne;Piękoś-Mirkowa,1996

4. Use of digital aerial photography for sub-alpine vegetation mapping: A case study from the Krkono?e Mts., Czech Republic

5. Biophysical Remote Sensing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3