Multi-Scenario Simulation of a Water–Energy Coupling System Based on System Dynamics: A Case Study of Ningbo City

Author:

Yin Yitong,Lin GangORCID,Jiang DongORCID,Fu Jingying,Dong Donglin

Abstract

In this work, based on the concept of collaborative water–energy development, a multi-scenario system dynamics simulation model of a water–energy coupling system was constructed by using the system dynamics modeling method. The model was composed of four subsystems: society, economic, water resources, and energy. Taking Ningbo City as the research location to run the simulation model, the analysis of the validity of the model showed that the relative error between the historical data and the simulation results of the model was less than 10%, which proved that the model passed the test. In this paper, based on the scenario of business an usual (BAU), three scenarios of water-saving scenario (WSS), energy-saving scenario (ESS), and comprehensive savings (CS, the comprehensive scenario considers water-saving and energy-saving together) were designed, and the simulation indexes in the three scenarios were refined in order to strengthen the control of water-saving policies, improve the effective use of water, optimize the industrial energy structure, improve the level of energy-saving-related technologies, and advance the urbanization process. The simulation results for Ningbo City from 2010 to 2030 show that the water–energy coupling system is affected by many factors, and the adjustment of a driving factor of any subsystem will have an impact on the water–energy coupling system. There are two driving factors: the first is a constant variable related to water resources, energy, society, and economic, and the second is a variable affected by time. The coupling system is based on the law of real development and is composed of causal and functional relationships between variables. Therefore, within the prediction range of 2030, the driving factors in the coupling system are controllable, and there is no uncontrollable situation. The strengthening of water-saving policies and the improvement of the coefficient of the effective utilization of water will have the optimal saving effects on water resources and energy at both the single and the coupling level; this also demonstrates that the water resource management in Ningbo City plays an extremely important role in the relationship of the water–energy coupling. The results of this study are expected to provide a valuable reference for the management and conservation of water–energy coupling in Ningbo City.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3