Abstract
Carbamazepine (CBZ) is one of the most common emerging contaminants released to the aquatic environment through domestic and pharmaceutical wastewater. Due to its high persistence through conventional degradation treatments, CBZ is considered a typical indicator for anthropogenic activities. This study tested the removal of CBZ through two different clay-based purification techniques: adsorption of relatively large concentrations (20–500 μmol L−1) and photocatalysis of lower concentrations (<20 μmol L−1). The sorption mechanism was examined by FTIR measurements, exchangeable cations released, and colloidal charge of the adsorbing clay materials. Photocatalysis was performed in batch experiments under various conditions. Despite the neutral charge of carbamazepine, the highest adsorption was observed on negatively charged montmorillonite-based clays. Desorption tests indicate that adsorbed CBZ is not released by washing. The adsorption/desorption processes were confirmed by ATR-FTIR analysis of the clay-CBZ particles. A combination of synthetic montmorillonite or hectorite with low H2O2 concentrations under UVC irradiation exhibits efficient homo-heterogeneous photodegradation at μM CBZ levels. The two techniques presented in this study suggest solutions for both industrial and municipal wastewater, possibly enabling water reuse.
Funder
CSO-MOH (Israeli Ministry of Health) AquaticPollutants ERA-NET Cofund
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献