Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment

Author:

Li Fuqiang,Zhang Hengjia,Li Xuan,Deng Haoliang,Chen Xietian,Liu Lintao

Abstract

This study was conducted at the Yimin Irrigation Experiment Station, Minle County, Zhangye City, Gansu Province, from April to October in 2019 and 2020. The relationship between water consumption and yield of potato at different stages of fertility under deficit-regulated irrigation was analyzed in a field trial study over two growing seasons. The results showed that the average annual water consumption in the tuber bulking stage was the largest, reaching 185.35~239.52 mm, followed by the average annual water consumption in the tuber initiation stage and starch accumulation stage, which were 100.02~132.30 mm and 82.48~112.36 mm, respectively, and the average annual water consumption in the seedling stage was the least, at 49.32~69.81 mm. Simultaneously, the average annual yield of potatoes in the treatment of WD1 was the highest, reaching 47,766.96 kg·hm−2, followed by CK, which was 43,707.6 kg·hm−2, and the yield of WD6 was the smallest in the treatment of moderate water deficit during tuber initiation, which was only 35,721.25 kg·hm−2. Combining the four moisture production function models of Jensen, Minhas, Blank and Stewart, the Jensen and Stewart models were identified as suitable for the potato moisture production function in a cold and arid environment. The water production function model was used to investigate the relationship between water consumption and yield in each growth period of potato, and to provide a theoretical basis for the optimization of the irrigation system under deficit-regulating irrigation conditions for potato in this irrigation area.

Funder

the Key Research and Developing Planning Projects of Gansu Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. Optimization of Water Use Efficiency under High Frequency Irrigation — I. Evapotranspiration and Yield Relationship

2. Agricultural Water Management Science;Kang,1996

3. Optimizing crop production through control of water and salinity levels in the soil;Stewart;Reports,1977

4. Water production functions for wheat under different environmental conditions

5. Water Consumption by Agricultural Plants (Chapter 1);Jensen,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3