Effect of Heat Treatment on Hygroscopicity of Chinese Fir (Cunninghamia lanceolata [Lamb.] Hook.) Wood

Author:

Gao Yulei1ORCID,Li Zhu2,Zhao Liyuan2,Lyu Jianxiong2ORCID

Affiliation:

1. Pan Tianshou College of Architecture, Art and Design, Ningbo University, Ningbo 315211, China

2. Research Institute of Wood Industry of Chinese Academy of Forestry, Beijing 100091, China

Abstract

Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) is a widely planted species of plantation forest in China, and heat treatment can improve its dimensional stability defects and improve its performance. The wood samples were heat-treated at various temperatures (160, 180, 200, and 220 °C) for 2 h. To clarify the effect of heat treatment on wood hygroscopicity, the equilibrium moisture content (EMC) was measured, the moisture adsorption and desorption rates were determined, the hygroscopic hysteresis was examined, and the Guggenheim, Anderson, and de Boer (GAB) model was fitted to the experimental data. The moisture absorption isotherms of all samples belonged to the Type II adsorption isotherm, but the shape of the desorption isotherm was more linear for heat-treated wood samples, especially when the heat treatment temperature was higher. According to the results analyzed with ANOVA, there were significant differences in equilibrium moisture content between the control samples and the heat-treated samples under the conditions of 30%, 60%, and 95% relative humidity (RH, p < 0.05), and the results of multiple comparisons were similar. The decrease in hygroscopicity was more pronounced in wood treated at higher temperatures. The EMC of the 160–220 °C heat-treated samples of the control samples was 14.00%, 22.37%, 28.95%, and 39.63% lower than that of the control sample at 95% RH. Under low RH conditions (30%), water is taken up mainly via monolayer sorption, and multilayer sorption gradually predominates over monolayer sorption with the increase in RH. The dynamic vapor sorption (DVS) analysis indicated that the heat-treated wood revealed an increase in isotherm hysteresis, which was due to the change in cell wall chemical components and microstructure caused by heat treatment. In addition, the effective specific surface area of wood samples decreased significantly after heat treatment, and the change trend was similar to that of equilibrium moisture content.

Funder

Zhejiang Province Public Welfare Technology Application Research Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3