Development of Solid Lipid Nanoparticles for Controlled Amiodarone Delivery

Author:

Creteanu Andreea1,Lisa Gabriela2ORCID,Vasile Cornelia3ORCID,Popescu Maria-Cristina3ORCID,Spac Adrian Florin4ORCID,Tantaru Gladiola5

Affiliation:

1. Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania

2. Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania

3. Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania

4. Department of Phisico Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania

5. Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania

Abstract

In various drug delivery systems, solid lipid nanoparticles are dominantly lipid-based nanocarriers. Amiodarone hydrochloride is an antiarrhythmic agent used to treat severe rhythm disturbances. It has variable and hard-to-predict absorption in the gastrointestinal tract because of its low solubility and high permeability. The aims of this study were to improve its solubility by encapsulating amiodarone into solid lipid nanoparticles using two excipients—Compritol® 888 ATO (pellets) (C888) as a lipid matrix and Transcutol® (T) as a surfactant. Six types of amiodarone-loaded solid lipid nanoparticles (AMD-SLNs) were obtained using a hot homogenization technique followed by ultrasonication with varying sonication parameters. AMD-SLNs were characterized by their size distribution, polydispersity index, zeta potential, entrapment efficiency, and drug loading. Based on the initial evaluation of the entrapment efficiency, only three solid lipid nanoparticle formulations (P1, P3, and P5) were further tested. They were evaluated through scanning electron microscopy, Fourier-transform infrared spectrometry, near-infrared spectrometry, thermogravimetry, differential scanning calorimetry, and in vitro dissolution tests. The P5 formulation showed optimum pharmaco-technical properties, and it had the greatest potential to be used in oral pharmaceutical products for the controlled delivery of amiodarone.

Funder

“Grigore T. Popa” University of Medicine and Pharmacy

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3