A Linearly Involved Generalized Moreau Enhancement of ℓ2,1-Norm with Application to Weighted Group Sparse Classification

Author:

Chen Yang,Yamagishi Masao,Yamada IsaoORCID

Abstract

This paper proposes a new group-sparsity-inducing regularizer to approximate ℓ2,0 pseudo-norm. The regularizer is nonconvex, which can be seen as a linearly involved generalized Moreau enhancement of ℓ2,1-norm. Moreover, the overall convexity of the corresponding group-sparsity-regularized least squares problem can be achieved. The model can handle general group configurations such as weighted group sparse problems, and can be solved through a proximal splitting algorithm. Among the applications, considering that the bias of convex regularizer may lead to incorrect classification results especially for unbalanced training sets, we apply the proposed model to the (weighted) group sparse classification problem. The proposed classifier can use the label, similarity and locality information of samples. It also suppresses the bias of convex regularizer-based classifiers. Experimental results demonstrate that the proposed classifier improves the performance of convex ℓ2,1 regularizer-based methods, especially when the training data set is unbalanced. This paper enhances the potential applicability and effectiveness of using nonconvex regularizers in the frame of convex optimization.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epigraphically-Relaxed Linearly-Involved Generalized Moreau-Enhanced Model for Layered Mixed Norm Regularization;2023 IEEE International Conference on Image Processing (ICIP);2023-10-08

2. A Unified Design of Generalized Moreau Enhancement Matrix for Sparsity Aware LiGME Models;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3