A Real-Time Car Towing Management System Using ML-Powered Automatic Number Plate Recognition

Author:

Ahmed Ahmed AbdelmoamenORCID,Ahmed Sheikh

Abstract

Automatic Number Plate Recognition (ANPR) has been widely used in different domains, such as car park management, traffic management, tolling, and intelligent transport systems. Despite this technology’s importance, the existing ANPR approaches suffer from the accurate identification of number plats due to its different size, orientation, and shapes across different regions worldwide. In this paper, we are studying these challenges by implementing a case study for smart car towing management using Machine Learning (ML) models. The developed mobile-based system uses different approaches and techniques to enhance the accuracy of recognizing number plates in real-time. First, we developed an algorithm to accurately detect the number plate’s location on the car body. Then, the bounding box of the plat is extracted and converted into a grayscale image. Second, we applied a series of filters to detect the alphanumeric characters’ contours within the grayscale image. Third, the detected the alphanumeric characters’ contours are fed into a K-Nearest Neighbors (KNN) model to detect the actual number plat. Our model achieves an overall classification accuracy of 95% in recognizing number plates across different regions worldwide. The user interface is developed as an Android mobile app, allowing law-enforcement personnel to capture a photo of the towed car, which is then recorded in the car towing management system automatically in real-time. The app also allows owners to search for their cars, check the case status, and pay fines. Finally, we evaluated our system using various performance metrics such as classification accuracy, processing time, etc. We found that our model outperforms some state-of-the-art ANPR approaches in terms of the overall processing time.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Machine Learning-Driven Automated Multi-Level Parking System;2024 IEEE Symposium on Wireless Technology & Applications (ISWTA);2024-07-20

2. Evaluating Factors Shaping Real-Time Internet-of-Things-Based License Plate Recognition Using Single-Board Computer Technology;Technologies;2024-07-01

3. Towards Autonomous Driving: Technologies and Data for Vehicles-to-Everything Communication;Sensors;2024-05-25

4. Efficient Rebroadcast Location-Unaware Protocol for LoRaWAN Mesh Networks in the IoT Domain;2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE);2024-05-24

5. Smart-Watcher: An AI-Powered IoT Monitoring System for Small-Medium Scale Premises;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3