Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII

Author:

Nahar Sultana N.1ORCID

Affiliation:

1. Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA

Abstract

The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = 57–71) and a new understanding of the creation of heavy elements in the r-process. The initial spectral emission bump has a wavelength range of 3000–7000 Å, thus covering the region of ultraviolet (UV) to optical (O) wavelengths, and is similar to those seen for lanthanides. Most lanthanides have a large number of closely lying energy levels, which introduce extensive sets of radiative transitions that often form broad regions of lines of significant strength. The current study explores these broad features through the photoabsorption spectroscopy of 25 lanthanide ions, Ho I-III, Er I-IV, Tm I-V, Yb I-VI, and Lu I-VII. With excitation only to a few orbitals beyond the ground configurations, we find that most of these ions cover a large number of bound levels with open 4f orbitals and produce tens to hundreds of thousands of lines that may form one or multiple broad features in the X-ray to UV, O, and infrared (IR) regions. The spectra of 25 ions are presented, indicating the presence, shapes, and wavelength regions of these features. The accuracy of the atomic data used to interpret the merger spectra is an ongoing problem. The present study aims at providing improved atomic data for the energies and transition parameters obtained using relativistic Breit–Pauli approximation implemented in the atomic structure code SUPERSTRUCTURE and predicting possible features. The present data have been benchmarked with available experimental data for the energies, transition parameters, and Ho II spectrum. The study finds that a number of ions under the present study are possible contributors to the emission bump of GW170817. All atomic data will be made available online in the NORAD-Atomic-Data database.

Funder

Ohio Supercomputer Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3