Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML

Author:

Brennan Des1,Galvin Paul1

Affiliation:

1. Tyndall National Institute, University College, T12 K8AF Cork, Ireland

Abstract

The challenge for ultrasonic (US) power transfer systems, in implanted/wearable medical devices, is to determine when misalignment occurs (e.g., due to body motion) and apply directional correction accordingly. In this study, a number of machine learning algorithms were evaluated to classify US transducer misalignment, based on data signal transmissions between the transmitter and receiver. Over seven hundred US signals were acquired across a range of transducer misalignments. Signal envelopes and spectrograms were used to train and evaluate machine learning (ML) algorithms, classifying misalignment extent. The algorithms included an autoencoder, convolutional neural network (CNN) and neural network (NN). The best performing algorithm, was deployed onto a TinyML device for evaluation. Such systems exploit low power microcontrollers developed specifically around edge device applications, where algorithms were configured to run on low power, restricted memory systems. TensorFlow Lite and Edge Impulse, were used to deploy trained models onto the edge device, to classify signals according to transducer misalignment extent. TinyML deployment, demonstrated near real-time (<350 ms) signal classification achieving accuracies > 99%. This opens the possibility to apply such ML alignment algorithms to US arrays (capacitive micro-machined ultrasonic transducer (CMUT), piezoelectric micro-machined ultrasonic transducer (PMUT) devices) capable of beam-steering, significantly enhancing power delivery in implanted and body worn systems.

Funder

ECSEL JU

Enterprise Ireland

Science Foundation Ireland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3