Lightweight Transformer Model for Mobile Application Classification

Author:

Gwak Minju1,Cha Jeongwon1,Yoon Hosun2,Kang Donghyun3ORCID,An Donghyeok1ORCID

Affiliation:

1. Department of Computer Engineering, Changwon National University, Changwon 51140, Republic of Korea

2. Network Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea

3. Department of Computer Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea

Abstract

Recently, realistic services like virtual reality and augmented reality have gained popularity. These realistic services require deterministic transmission with end-to-end low latency and high reliability for practical applications. However, for these real-time services to be deterministic, the network core should provide the requisite level of network. To deliver differentiated services to each real-time service, network service providers can classify applications based on traffic. However, due to the presence of personal information in headers, application classification based on encrypted application data is necessary. Initially, we collected application traffic from four well-known applications and preprocessed this data to extract encrypted application data and convert it into model input. We proposed a lightweight transformer model consisting of an encoder, a global average pooling layer, and a dense layer to categorize applications based on the encrypted payload in a packet. To enhance the performance of the proposed model, we determined hyperparameters using several performance evaluations. We evaluated performance with 1D-CNN and ET-BERT. The proposed transformer model demonstrated good performance in the performance evaluation, with a classification accuracy and F1 score of 96% and 95%, respectively. The time complexity of the proposed transformer model was higher than that of 1D-CNN but performed better in application classification. The proposed transformer model had lower time complexity and higher classification performance than ET-BERT.

Funder

Electronics and Telecommunications Research Institute (ETRI) grant funded by ICT R&D program of MSIT/IITP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3