Robustness Evaluations of Sustainable Machine Learning Models against Data Poisoning Attacks in the Internet of Things

Author:

Dunn Corey,Moustafa NourORCID,Turnbull BenjaminORCID

Abstract

With the increasing popularity of the Internet of Things (IoT) platforms, the cyber security of these platforms is a highly active area of research. One key technology underpinning smart IoT systems is machine learning, which classifies and predicts events from large-scale data in IoT networks. Machine learning is susceptible to cyber attacks, particularly data poisoning attacks that inject false data when training machine learning models. Data poisoning attacks degrade the performances of machine learning models. It is an ongoing research challenge to develop trustworthy machine learning models resilient and sustainable against data poisoning attacks in IoT networks. We studied the effects of data poisoning attacks on machine learning models, including the gradient boosting machine, random forest, naive Bayes, and feed-forward deep learning, to determine the levels to which the models should be trusted and said to be reliable in real-world IoT settings. In the training phase, a label modification function is developed to manipulate legitimate input classes. The function is employed at data poisoning rates of 5%, 10%, 20%, and 30% that allow the comparison of the poisoned models and display their performance degradations. The machine learning models have been evaluated using the ToN_IoT and UNSW NB-15 datasets, as they include a wide variety of recent legitimate and attack vectors. The experimental results revealed that the models’ performances will be degraded, in terms of accuracy and detection rates, if the number of the trained normal observations is not significantly larger than the poisoned data. At the rate of data poisoning of 30% or greater on input data, machine learning performances are significantly degraded.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial examples: A survey of attacks and defenses in deep learning-enabled cybersecurity systems;Expert Systems with Applications;2024-03

2. Security of IoT-Cloud Systems Based Machine Learning;Lecture Notes in Networks and Systems;2024

3. Blockchain-Based Decentralized Learning for Security in Digital Twins;IEEE Internet of Things Journal;2023-12-15

4. Data Poisoning Attacks over Diabetic Retinopathy Images Classification;2023 IEEE International Conference on Big Data (BigData);2023-12-15

5. European Artificial Intelligence Act: an AI security approach;Information & Computer Security;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3