Tailoring the Grain Size of Bi-Layer Graphene by Pulsed Laser Deposition

Author:

Wang Jin,Wang Xuemin,Yu Jian,Xiao Tingting,Peng Liping,Fan Long,Wang Chuanbin,Shen Qiang,Wu Weidong

Abstract

Improving the thermoelectric efficiency of a material requires a suitable ratio between electrical and thermal conductivity. Nanostructured graphene provides a possible route to improving thermoelectric efficiency. Bi-layer graphene was successfully prepared using pulsed laser deposition in this study. The size of graphene grains was controlled by adjusting the number of pulses. Raman spectra indicated that the graphene was bi-layer. Scanning electron microscopy (SEM) images clearly show that graphene changes from nanostructured to continuous films when more pulses are used during fabrication. Those results indicate that the size of the grains can be controlled between 39 and 182 nm. A detailed analysis of X-ray photoelectron spectra reveals that the sp2 hybrid state is the main chemical state in carbon. The mobility is significantly affected by the grain size in graphene, and there exists a relatively stable region between 500 and 800 pulses. The observed phenomena originate from competition between decreasing resistance and increasing carrier concentration. These studies should be valuable for regulating grains sizes for thermoelectric applications of graphene.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3