Abstract
Three-dimensional (3D) cross-linked polymer-like reduced graphene oxide foams (rGOFs) with a seamlessly continuous graphene network, exhibit high photoresponsive and conductivity and have received much attention regarding solar cells and supercapacitors. However, little attention has been paid to photodetection applications of 3D rGOFs. Here we report a novel broadband phototransistor based on metal-3D GFs-metal, which exhibits a high light absorption and a wide spectra response ranging at least from 400 to 1600 nm wavelength with a maximum photoresponsivity of 10 mA/W at 400 nm. In particular, stable and reproducible photocurrent cycles are achieved under different light blue light (405 nm), green light (532 nm), and NIR (808 nm) irradiations. Moreover, the device displays a typical transistor characteristic with a rapid response time of 18 ms at under 532 nm irradiation. The excellent performances indicate 3D rGOF as a promising candidate for future photodetection application.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Reference41 articles.
1. The k.p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation;Marconcini;La Rivista del Nuovo Cimento,2011
2. The electronic properties of graphene
3. Carbon-based electronics
4. Fine Structure Constant Defines Visual Transparency of Graphene
5. Electrochemical Modification of Graphene
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献