Membrane Permeabilization by Bordetella Adenylate Cyclase Toxin Involves Pores of Tunable Size

Author:

González-Bullón David,B. Uribe KepaORCID,Largo EnekoORCID,Guembelzu Garazi,García-Arribas Aritz B.,Martín César,Ostolaza HelenaORCID

Abstract

RTX (Repeats in ToXin) pore-forming toxins constitute an expanding family of exoproteins secreted by many Gram-negative bacteria and involved in infectious diseases caused by said pathogens. Despite the relevance in the host/pathogen interactions, the structure and characteristics of the lesions formed by these toxins remain enigmatic. Here, we capture the first direct nanoscale pictures of lytic pores formed by an RTX toxin, the Adenylate cyclase (ACT), secreted by the whooping cough bacterium Bordetella pertussis. We reveal that ACT associates into growing-size oligomers of variable stoichiometry and heterogeneous architecture (lines, arcs, and rings) that pierce the membrane, and that, depending on the incubation time and the toxin concentration, evolve into large enough “holes” so as to allow the flux of large molecular mass solutes, while vesicle integrity is preserved. We also resolve ACT assemblies of similar variable stoichiometry in the cell membrane of permeabilized target macrophages, proving that our model system recapitulates the process of ACT permeabilization in natural membranes. Based on our data we propose a non-concerted monomer insertion and sequential mechanism of toroidal pore formation by ACT. A size-tunable pore adds a new regulatory element to ACT-mediated cytotoxicity, with different pore sizes being putatively involved in different physiological scenarios or cell types.

Funder

Eusko Jaurlaritza

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3