Affiliation:
1. Department of Information and Communications Engineering, Sejong University, Seoul 05006, Republic of Korea
2. Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea
Abstract
LiDAR place recognition is a crucial component of autonomous navigation, essential for loop closure in simultaneous localization and mapping (SLAM) systems. Notably, while camera-based methods struggle in fluctuating environments, such as weather or light, LiDAR demonstrates robustness against such challenges. This study introduces the intensity and spatial cross-attention transformer, which is a novel approach that utilizes LiDAR to generate global descriptors by fusing spatial and intensity data for enhanced place recognition. The proposed model leveraged a cross attention to a concatenation mechanism to process and integrate multi-layered LiDAR projections. Consequently, the previously unexplored synergy between spatial and intensity data was addressed. We demonstrated the performance of IS-CAT through extensive validation on the NCLT dataset. Additionally, we performed indoor evaluations on our Sejong indoor-5F dataset and demonstrated successful application to a 3D LiDAR SLAM system. Our findings highlight descriptors that demonstrate superior performance in various environments. This performance enhancement is evident in both indoor and outdoor settings, underscoring the practical effectiveness and advancements of our approach.
Funder
Ministry of Science and ICT (MSIT), Korea
the Korea government