A Differential Inertial Wearable Device for Breathing Parameter Detection: Hardware and Firmware Development, Experimental Characterization

Author:

De Fazio RobertoORCID,Greco Maria Rosaria,De Vittorio Massimo,Visconti PaoloORCID

Abstract

Breathing monitoring is crucial for evaluating a patient’s health status. The technologies commonly used to monitor respiration are costly, bulky, obtrusive, and inaccurate, mainly when the user moves. Consequently, efforts have been devoted to providing new solutions and methodologies to overcome these limitations. These methods have several uses, including healthcare monitoring, measuring athletic performance, and aiding patients with respiratory diseases, such as COPD (chronic obtrusive pulmonary disease), sleep apnea, etc. Breathing-induced chest movements can be measured noninvasively and discreetly using inertial sensors. This research work presents the development and testing of an inertia-based chest band for breathing monitoring through a differential approach. The device comprises two IMUs (inertial measurement units) placed on the patient’s chest and back to determine the differential inertial signal, carrying out information detection about the breathing activity. The chest band includes a low-power microcontroller section to acquire inertial data from the two IMUs and process them to extract the breathing parameters (i.e., RR—respiration rate; TI/TE—inhalation/exhalation time; IER—inhalation-to-exhalation time; V—flow rate), using the back IMU as a reference. A BLE transceiver wirelessly transmits the acquired breathing parameters to a mobile application. Finally, the test results demonstrate the effectiveness of the used dual-inertia solution; correlation and Bland–Altman analyses were performed on the RR measurements from the chest band and the reference, demonstrating a high correlation (r¯ = 0.92) and low mean difference (MD¯ = −0.27 BrPM (breaths per minute)), limits of agreement (LoA¯ = +1.16/−1.75 BrPM), and mean absolute error (MAE¯ = 1.15%). Additionally, the experimental results demonstrated that the developed device correctly measured the other breathing parameters (TI, TE, IER, and V), keeping an MAE of ≤5%. The obtained results indicated that the developed chest band is a viable solution for long-term breathing monitoring, both in stationary and moving users.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heartbeat and respiration monitoring based on FBG sensor network;Optical Fiber Technology;2023-12

2. Biocompatible and Flexible Piezoelectric Thin Film Materials and Devices for Skin Compliant Transducers;2023 IEEE Nanotechnology Materials and Devices Conference (NMDC);2023-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3