Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN

Author:

Cui Wei,Meng Guoying,Gou Tingxi,Wang Aiming,Xiao Rui,Zhang Xinge

Abstract

Rolling bearings are a vital component of mechanical equipment. It is crucial to implement rolling bearing fault diagnosis research to guarantee the stability of the long-term action of mechanical equipment. Conversion of rolling bearing vibration signals into images for fault diagnosis research has been a practical diagnostic approach. The current paper presents a rolling bearing fault diagnosis method using symmetrized dot pattern (SDP) images and a deep residual network with convolutional block attention module (CBAM-DRN). The rolling bearing vibration signal is first visualized and transformed into an SDP image with distinct fault characteristics. Then, CBAM-DRN is utilized to derive characteristics directly and detect faults from the input SDP images. In order to prevent conventional time-frequency images from being limited by their inherent flaws and avoid missing the fault features, the SDP technique is employed to convert vibration signals into images for visualization. DRN enables adequate extraction of rolling bearing fault characteristics and prevents training difficulties and gradient vanishing in deep level networks. CBAM assists the diagnostic model in concentrating on the image’s more distinctive parts and preventing the interference of non-featured parts. Finally, the method’s validity was tested with a composite fault dataset of motor bearings containing multiple loads and fault diameters. The experimental results reflect that the presented approach can attain a diagnostic precision of over 99% and good stability and generalization.

Funder

National Key Research and Development Program “Basic Theories and Key Technologies for Deep Coal Mine Construction and Promotion”

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Applications of machine learning to machine fault diagnosis: A review and roadmap;Lei;Mech. Syst. Signal Process.,2020

2. Deep learning and its applications to machine health monitoring;Zhao;Mech. Syst. Signal Process.,2019

3. Artificial intelligence for fault diagnosis of rotating machinery: A review;Liu;Mech. Syst. Signal Process.,2018

4. Application of Rotating Machinery Fault Diagnosis Based on Deep Learning;Cui;Shock Vib.,2021

5. Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning;Cao;IEEE Access,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3