Wheel Tread Reconstruction Based on Improved Stoilov Algorithm

Author:

Tang TaoORCID,Peng Jianping,Li JinlongORCID,Wan Yingying,Liu Xingzi,Ma Ruyu

Abstract

With the development of rail transit in terms of speed and carrying capacity, train safety problems caused by wheel tread defects and wear have become more prominent. The wheel is an important part of the train, and the wear and defects of the wheel tread are directly related to the safety of the train; therefore, wheel tread testing is a key element of train testing. In phase measuring profilometry (PMP), the virtual sine grating generated by the computer is projected onto the measured wheel tread by a digital projector, and then a camera is used to obtain the modulated deformed grating on the surface of the wheel tread. Next, the wrapped phase is obtained by the improved Stoilov algorithm, and the unwrapped phase is obtained by the phase unwrapped algorithm. Finally, the three-dimensional (3D) profile of the wheel tread is reconstructed. This paper presents an improved Stoilov algorithm based on probability and statistics. Supposing that the probability of real data was the highest, we chose the cosine square matrix value of the phase shift for processing. After ruling out the singular points of large error, we obtained the closest value to the true phase shift using the method of probability and statistics. The experimental results show that this method can effectively restrain the singular phenomenon, and the 3D profile of wheel tread can be reconstructed successfully.

Funder

Natural Foundation International Cooperation Project

Publisher

MDPI AG

Subject

General Medicine

Reference29 articles.

1. Wheel Tread Wear Characteristics of High-Speed Electric Multi-Units;Xu;Acad. J. Xi’nan Jiaotong Univ.,2021

2. Review on wheel-rail dynamic responses caused by wheel tread defects;Lin;J. Traffic. Transp. Eng.,2021

3. Noise reduction by fuzzy image filtering

4. Detection of Slit Defects on Backside of Steel Plate Using Low-Frequency Eddy-Current Testing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3