Metallurgical Effects of Niobium in Dual Phase Steel

Author:

Mohrbacher Hardy,Yang Jer-Ren,Chen Yu-Wen,Rehrl Johannes,Hebesberger Thomas

Abstract

Dual phase (DP) steels are widely applied in today’s automotive body design. The favorable combination of strength and ductility in such steels is in first place related to the share of ferrite and martensite. The pronounced work hardening behavior prevents localized thinning and allows excellent stretch forming. Niobium microalloying was originally introduced to dual phase steel for improving bendability by refining the microstructure. More recently developed “high ductility” (HD) DP steel variants provide increased drawability aided by a small share of austenite retained in the microstructure. In this variant niobium microalloying produces grain refinement and produces a dispersion of nanometer-sized carbide precipitates in the steel matrix which additionally contributes to strength. This study investigates the microstructural evolution and progress of niobium precipitation during industrial processing of high-ductility DP 980. The observations are interpreted considering the solubility and precipitation kinetics of niobium. The influences of niobium on microstructural characteristics and its contributions to strength and formability are discussed.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Annealing response and yielding behavior of cold rolled advanced HSLA steels;Materials Science and Engineering: A;2024-06

2. TBF1180 çeliğin fiber lazer uygulamaları;Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji;2024-03-25

3. Parametric study of local laser heat treatment technology on multi forming of advanced-high strength steel (AHSS) part with complex shape;International Journal of Lightweight Materials and Manufacture;2024-03

4. Advanced Multiphase Steels;Metals;2023-11-10

5. Effect of recrystallization on bainite transformation and mechanical properties of complex phase steel with high formability (CH steel);Journal of Materials Research and Technology;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3