A Comparison of Strengthening Mechanisms of Austenitic Fe-13Mn-1.3C Steel in Warm and Cold High-Pressure Torsion

Author:

Maier Galina G.,Astafurova Elena G.ORCID

Abstract

A study on the role of deformation temperature on a twin-assisted refinement of austenitic structure and phase transformations in high-pressure torsion of high-Mn Hadfield steel single crystals (Fe-13Mn-1.3C, in mass. %) has been carried out. In high pressure-torsion, twinning has been experimentally confirmed as a high-temperature deformation mechanism and has been observed at the temperature 400 °C. An increase in deformation temperature of up to 400 °C decreases the activity of mechanical twinning but does not fully suppress it. A dense net of twin boundaries, which has been produced in cold deformation by high-pressure torsion at room temperature, possesses high thermal stability and stays untransformed after post-deformation annealing at a temperature of 400 °C. In high-pressure torsion at a temperature of 400 °C, the complex effect of high temperature and severe plastic deformation on the strengthening of high-carbon Fe-13Mn-1.3C steel has been observed. A synergetic effect of severe plastic deformation and elevated temperature stimulates a nucleation of nanoscale precipitates (carbides and ferrite) along with deformation-induced defects in austenitic structure. These fine precipitates are homogeneously distributed in the bulk of the material and assist high values of microhardness in high-pressure torsion-processed specimens, which is similar to twin-assisted microstructure.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3