Influence of Different Soaking Times at 1050 °C on the UT Response Due to Microstructure Evolution of 2205 Duplex Stainless Steel

Author:

Gruttadauria AndreaORCID,Barella SilviaORCID,Mapelli CarloORCID,Mombelli DavideORCID

Abstract

Under standard conditions, DSS (duplex stainless steel) features differing amounts of ferrite and austenite, essentially depending on the thermal treatment performed. This study is focused on the ultrasonic tests (UTs) response of DSS 2205, as a function of the microstructure, in terms of austenite volume fraction and austenitic grains evolution owing to different soaking times at 1050 °C. UTs were carried out on several samples. The samples underwent varying thermal treatments characterized by a constant maintenance temperature with different soaking times that allowed for microstructure evolution and modification of the structural constituents’ fraction. The UTs have highlighted an attenuation trend with the response mainly dependent upon the wave scattering and energy absorption caused by the grain features. In particular, the peak of sound attenuation was shown to correspond with the microstructure, which featured a major amount of austenite (in terms of volume fraction and the grain dimensions) and the disappearance of austenitic precipitates within the ferritic matrix. In order to obtain less UT attenuation, without affecting the mechanical and corrosion properties, the soaking should last as little time as possible.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference26 articles.

1. Le Prove Non Distruttive,1999

2. Ultrasonics: A Technique of Material Characterization;Pandey,2010

3. Nondestructive Evaluation and Quality Control,1999

4. Effect of microstructure of low carbon steels on ultrasonic attenuation;Ahn;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2000

5. Ultrasonic Characterization and Micro-Structural Studies On 2205 Duplex Stainless Steel in Thermal Variations;Victoria;Int. J. Sci. Tech. Res.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3