Abstract
The aim of this study was to develop new chrome-free surface pretreatments for AA2024-T3 aluminum alloy. These pretreatments were based on hybrid organic–inorganic sol–gel thin films prepared from mixtures of γ-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethylorthosilicate (TMOS). Different MAPTMS/TMOS molar ratios were used for optimizing the physical–chemical characteristics of the sol–gel films. The formulation of a set of these sols was modified by incorporating piperazine (1,4-diazacyclohexane) as a corrosion inhibitor. The resulting sol–gel films were characterized by using Fourier transform infrared spectroscopy (FTIR), liquid-state 29Si nuclear magnetic resonance spectroscopy (29Si-NMR) and viscosity measurements. The corrosion performance of the sol–gel films was analyzed by using electrochemical impedance spectroscopy (EIS) and local electrochemical impedance mapping (LEIM). The characterization techniques indicated that piperazine behaved as a catalyst for the condensation reaction during the formation of the MAPTMS/TMOS organopolysiloxane network and produces an increase of the crosslinking degree of the sol–gel films. EIS and LEIM results showed that piperazine is an effective corrosion inhibitor, which can be used to enhance the active corrosion protection performance of sol–gel films.
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献