The Simulation and Optimization of an Electromagnetic Field in a Vertical Continuous Casting Mold for a Large Bloom

Author:

Zhang Lianwang,Xu Changjun,Zhang Jiazheng,Wang Tao,Li Jing,Li Shengli

Abstract

The electromagnetic model of a large-bloom continuous casting was established to simulate the magnetic field. The model 3600 digital, high-precision, three-dimensional Gaussian meter was used to measure the internal magnetic field of mold electromagnetic stirring (M-EMS). The distribution of simulated magnetic field was basically consistent with that of the measured magnetic field; the accuracy of electromagnetic stirring model was verified. With the increase of current frequency, the electromagnetic force first increases and then decreases; when the current frequency is 9 Hz, the electromagnetic force reaches its maximum value. A bipolar electromagnetic stirring model is proposed; the influence of current intensity and distance were investigated. With the increase of current intensity of lower mold electromagnetic stirring (M-EMSB), the internal magnetic intensity of upper mold electromagnetic stirring (M-EMSA) gradually increases, and the middle region is gradually filled by magnetic field. With the increase of the distance, the range of the low-intensity magnetic field expands. When the current intensity of the M-EMSB is 320 A, and the distance is 400 mm, an 8 mT uniform magnetic field in the range of 1.2 m is formed. Compared with the traditional continuous casting electromagnetic agitator, the center equiaxial crystal of bipolar electromagnetic agitator increases from 30.3% to 49.5%.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3