Influence of Laser-Assisted Fusing on Microstructural Evolution and Tribological Properties of NiWCrSiB Coating

Author:

Park Changkyoo,Chun Eun-JoonORCID

Abstract

The present study examines the applicability of a diode laser-assisted fusing treatment and a temperature-control system to the NiWCrSiB thermal spray coating to develop the enhanced wear resistance of continuous-casting molds. As a result of the use of the lasers, the variations in the microstructure and the hardening behavior during the fusing treatment could be controlled. Fine secondary phases (approximately 0.05–10 μm in size) homogeneously present in the coating after the laser-assisted fusing were observed to be Cr-, Mo- and W-based carbides and borides. Transmission electron microscope analysis was used to characterize these fine secondary phases as M7C3 and M23C6 carbides and M5B3 boride. Because of these fine secondary phases, the hardness increased from 730 (as-sprayed status) to 1230 HV (after fusing at a temperature of 1473 K). Finally, given the formation of fine secondary phases and the occurrence of surface hardening, the laser-assisted fusing treatment was deemed to enhance the tribological performance of the thermal-sprayed coating, in that it exhibited a lower coefficient of friction and lower wear rate than the as-sprayed coating.

Funder

National Research Foundation of Korea

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3