Copper Corrosion Behavior in Simulated Concrete-Pore Solutions

Author:

Bacelis ÁngelORCID,Veleva LucienORCID,Alpuche-Avilés Mario A.

Abstract

The copper corrosion was studied for 30 days in two alkaline electrolytes: saturated Ca(OH)2 and cement extract, employed to simulate concrete-pore environments. Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry were carried out at the open circuit potential (OCP), and potentiodynamic polarization (PDP) curves were performed for comparative purposes. Electrochemical current fluctuations, considered as electrochemical noise (EN), were employed as non-destructive methods. The tests revealed that sat. Ca(OH)2 is the less aggressive to the Cu surface, mainly because of the lower in one order pH. In consequence, the OCP values of Cu were more positive, the polarization resistance values were higher by one order of magnitude, and the anodic currents of Cu were lower than those in the cement extract. The analyzed EN indicated that the initial corrosion attacks on the Cu surface are quasi-uniform, resulting from the stationary persistent corrosion process occurring in both model solutions. XPS analysis and X-ray diffraction (XRD) patterns revealed that in sat. Ca(OH)2, a Cu2O/CuO corrosion layer was formed, which effectively protects the metallic Cu-surface. We present evidence for the sequential oxidation of Cu to the (+1) and (+2) species, its impact on the corrosion layer, and also its protective properties.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference70 articles.

1. The behavior of aluminum in alkaline media

2. The corrosion of metals in contact with concrete;Halstead;Chem. Ind.,1957

3. Corrosion behaviour of non-ferrous metals embedded in mortar

4. Edificio Automatizado de Oficinas: Uso del Cobre en la Arquitectura;Freire,2001

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3