Characterization of Influences of Steel-Aluminum Dissimilar Joints with Intermediate Zinc Layer

Author:

Bick Tobias,Heuler Verena,Treutler KaiORCID,Wesling Volker

Abstract

Brittle intermetallic phases are formed when steel and aluminum are joined. Therefore, it is difficult to use this combination of materials when applying the multimaterial design in the construction of load-adapted and weight-adapted structures. In order to largely avoid the formation of these brittle phases, joining processes based on diffusion processes, such as composite forging, depict a good solution approach. The materials are joined in a solid state. Furthermore, zinc additives are used to create the joint. Zinc forms a compound with both steel and aluminum without the formation of brittle phases. By combining the composite forging process with zinc additives, strength values of 26 N/mm2 can be reached. This is higher, in comparison to former investigations of resistance spot welded and clinched joints. The joint properties depend on the composition of the zinc interlayer. Small amounts of magnesium in the zinc interlayer affected the strength and ductility values. While the strength decreased by about 30% in contrast to the zinc layer without magnesium, the ductility increased by 60%. This effect was probably due to the metallurgical impact of the alloying elements on phase formation, as could be shown by energy dispersive X-ray spectroscopy (EDX) analyses of the joint zones. Thereby, it was shown that the brittle intermetallic phases are located only in small areas.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference41 articles.

1. Development of Hot Dip Galvanized Steel Strip and Its Application in Automobile Industry

2. Laserstrahlfügen von Aluminium mit Stahl;Radscheit,1997

3. Über die Kinetik der Reaktion von festem und flüssigem Aluminium mit Eisen;Heumann;Zeitschrift für Metallkunde,1959

4. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3