Author:
Riedel Eric,Liepe Martin,Scharf Stefan
Abstract
Ultrasonic treatment (UST), more precisely, cavitation and acoustic streaming, of liquid light metal alloys is a very promising technology for achieving grain and structure refinement, and therefore, better mechanical properties. The possibility of predicting these process phenomena is an important requirement for understanding, implementing, and scaling this technology in the foundry industry. Using an established (casting) computational fluid dynamics (CFD)-simulation tool, we studied the ability of this software to calculate the onset and expansion of cavitation and acoustic streaming for the aluminum alloy A356, partly depending on different radiator geometries. A key aspect was a holistic approach toward pressure distribution, cavitation, and acoustic streaming prediction, and the possibility of two- and (more importantly) three-dimensional result outputs. Our feasibility analysis showed that the simulation tool is able to predict the mentioned effects and that the results obtained are in good agreement with the results and descriptions of previous investigations. Finally, capabilities and limitations as well as future challenges for further developments are discussed.
Funder
Allianz Industrie Forschung
European Regional Development Fund
Subject
General Materials Science,Metals and Alloys
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献