Comparison between 2D Shallow-Water Simulations and Energy-Momentum Computations for Transcritical Flow Past Channel Contractions

Author:

Cueto-Felgueroso Luis,Santillán DavidORCID,García-Palacios Jaime H.,Garrote LuisORCID

Abstract

Multidimensional simulators of channel and river flow are widely used in industry and academia, raising the question about whether the classical one-dimensional theory of open-channel flow remains relevant in hydraulic engineering. Channel contractions that induce transcritical flow are interesting scenarios to test the classical 1D theory against multidimensional simulations, because supercritical flow in channels of variable width leads to multidimensional flow structures. Transcritical flows are important in practice, because the ensuing hydraulic jumps and regions of supercritical flow may damage hydraulic structures that otherwise operate under tranquil conditions. We compare well-resolved simulations of the 2D shallow-water Equations (SWE) with 1D energy-momentum calculations for flow past symmetric channel contractions. We analyze the accuracy of the classical energy-momentum gradually-varied flow theory to predict the onset of regime transitions and the location of hydraulic jumps. We test the relative performance of the 1D theory for different constriction geometries, and identify the flow mechanisms behind the discrepancies between the 1D and 2D predictions. The grid resolution used in the 2D SWE plays an important role in these predictions, because coarse-grid 2D simulations yield essentially quasi-1D results. Considering its simplicity and negligible computational cost compared with the 2D SWE simulations, the classical 1D theory performs remarkably well for a wide range of flow conditions and contraction geometries. In contrast, we observe large deviations between the 1D and 2D models in flow past abrupt contractions with a large width ratio, as expected. Only modified versions of the 1D theory, taking into account intense local head losses and the propagation of spatial flow structures downstream from the contraction, can succeed at describing these flow scenarios.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference65 articles.

1. Hydraulics of Open Channels;Bakhmeteff,1932

2. Boris A. Bakhmeteff and the Development of Specific Energy and Momentum Concepts

3. Open-Channel Hydraulics;Chow,1959

4. Open Channel Flow;Henderson,1966

5. The Hydraulics of Open Channel Flow: An Introduction;Chanson,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3