Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples

Author:

Wan Zheng1ORCID,Li Hui1

Affiliation:

1. College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

There are many influencing factors present in different situations of power load. There is also a strong imbalance in the number of load samples. In addition to examining the problem of low training efficiency of existing algorithms, this paper proposes a short-term power load prediction method based on feature selection and error compensation under imbalanced samples. After clustering the load data, we expand some sample data to balance the sample categories and input the load data and filtered feature sequences into the improved GRU for prediction. At the same time, the errors generated during the training process are used as training data. An error correction model is constructed and trained, and the results are used for error compensation to further improve prediction accuracy. The experimental results show that the overall prediction accuracy of the model has increased by 80.24%. After expanding a few samples, the prediction accuracy of the region where the samples are located increased by 59.41%. Meanwhile, due to the improvement of the algorithms, the running time was reduced by approximately 14.92%.

Funder

Shanghai Science and Technology Commission Key Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air conditioning load prediction based on hybrid data decomposition and non-parametric fusion model;Journal of Building Engineering;2023-12

2. Short-Term Power Load Forecasting Based on Meteorological Accumulation and ACA-GRNN;2023 3rd Asian Conference on Innovation in Technology (ASIANCON);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3