Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control

Author:

Li Qingyan1,Lin Tao1,Yu Qianyi2,Du Hui1,Li Jun1,Fu Xiyue1

Affiliation:

1. Hubei Engineering and Technology Research Center for AC/DC Intelligent Distribution Network, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

2. Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia

Abstract

With the ongoing transformation of electricity generation from large thermal power plants to smaller renewable energy sources (RESs), such as wind and solar, modern renewable power systems need to address the new challenge of the increasing uncertainty and complexity caused by the deployment of electricity generation from RESs and the integration of flexible loads and new technologies. At present, a high volume of available data is provided by smart grid technologies, energy management systems (EMSs), and wide-area measurement systems (WAMSs), bringing more opportunities for data-driven methods. Deep reinforcement learning (DRL), as one of the state-of-the-art data-driven methods, is applied to learn optimal or near-optimal control policy by formulating the power system as a Markov decision process (MDP). This paper reviews the recent DRL algorithms and the existing work of operational control or emergency control based on DRL algorithms for modern renewable power systems and control-related problems for small signal stability. The fundamentals of DRL and several commonly used DRL algorithms are briefly introduced. Current issues and expected future directions are discussed.

Funder

science and technology project of the State Grid Corporation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference86 articles.

1. Area-wide system protection scheme against extreme contingencies;Lachs;Proc. IEEE,2005

2. Muir, A., and Lopatto, J. (2004). Final Report on the 14 August 2003 Blackout in the United States and Canada: Causes and Recommendations, U.S.-Canada Power System Outage Task Force.

3. A comprehensive review on uncertainty modeling techniques in power system studies;Aien;Renewableand Sustain. Energy Rev.,2016

4. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv.

5. Mastering the game of go without human knowledge;Silver;Nature,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reinforcement Learning Algorithms Performance Evaluation for Management Problems Decision in Socio-Economic Systems;2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2023-11-08

2. Dynamic Regimes for Corporate Human Capital Development Used Reinforcement Learning Methods;Mathematics;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3