Overview of Various Voltage Control Technologies for Wind Turbines and AC/DC Connection Systems

Author:

Wu Yuan-Kang1ORCID,Gau Deng-Yue1,Tung Trinh-Duc1ORCID

Affiliation:

1. Department Electrical Engineering, National Chung-Cheng University, No. 168, University Rd., Chiayi 62102, Taiwan

Abstract

Wind power generation is one of the mainstream renewable energy resources. Voltage stability is as important as the frequency stability of a power system with a high penetration of wind power generation. The advantages of high-voltage direct current (HVDC) transmission systems become more significant with the increase of both installed capacity and transmission distance in offshore wind farms. Therefore, this study discusses various voltage control methods for wind turbines and HVDC transmission systems. First, various voltage control methods of a wind farm were introduced, and they include QV control and voltage droop control. The reactive power of a wind turbine varies with active power, while the active power from each wind turbine may be different owing to wake effects. Thus, QV and voltage droop control with varying gain values are also discussed in this paper. Next, the voltage control methods for an HVDC transmission system, such as power factor control, voltage control, and Vac-Q control, are also summarized and tested in this study. When a three-phase short circuit fault occurs or a sudden reactive power load increases, the system voltage would drop immediately. Thus, various voltage control methods for wind turbines or HVDC can make the system’s transient response more stable. Therefore, this study implemented the simulation scenarios, including a three-phase short circuit fault at the point of common coupling (PCC) or a sudden increase of reactive power load, and adopted various voltage control methods, which aim to verify whether additional voltage control methods are effective to improve the performance of transient voltage. The voltage control method has been implemented in PSCAD/EMTDC, and the simulation results show that the QV control performs better than the droop control. In addition, when applying the voltage control technique during a three-phase fault, transient voltage nadir can be improved through either an HVDC transmission system or an AC transmission system.

Funder

Ministry of Science and Technology (MOST) of Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3