Prediction of TOC Content in Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study of Random Forest, Support Vector Machine, and XGBoost

Author:

Sun Jiangtao1,Dang Wei12ORCID,Wang Fengqin12,Nie Haikuan3,Wei Xiaoliang45,Li Pei3,Zhang Shaohua12ORCID,Feng Yubo1,Li Fei1

Affiliation:

1. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China

3. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China

4. Exploration and Development Institute of Shengli Oilfield Company, SINOPEC, Dongying 257000, China

5. Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, China University of Geosciences, Beijing 100083, China

Abstract

The total organic carbon (TOC) content of organic-rich shale is a key parameter in screening for potential source rocks and sweet spots of shale oil/gas. Traditional methods of determining the TOC content, such as the geochemical experiments and the empirical mathematical regression method, are either high cost and low-efficiency, or universally non-applicable and low-accuracy. In this study, we propose three machine learning models of random forest (RF), support vector regression (SVR), and XGBoost to predict the TOC content using well logs, and the performance of each model are compared with the traditional empirical methods. First, the decision tree algorithm is used to identify the optimal set of well logs from a total of 15. Then, 816 data points of well logs and the TOC content data collected from five different shale formations are used to train and test these three models. Finally, the accuracy of three models is validated by predicting the unknown TOC content data from a shale oil well. The results show that the RF model provides the best prediction for the TOC content, with R2 = 0.915, MSE = 0.108, and MAE = 0.252, followed by the XGBoost, while the SVR gives the lowest predictive accuracy. Nevertheless, all three machine learning models outperform the traditional empirical methods such as Schmoker gamma-ray log method, multiple linear regression method and ΔlgR method. Overall, the proposed machine learning models are powerful tools for predicting the TOC content of shale and improving the oil/gas exploration efficiency in a different formation or a different basin.

Funder

National Natural Science Foundation of China

Open Foundation of the provincial and ministerial Key Laboratory of the China University of Geosciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3