A Review on Multilevel Converters for Efficient Integration of Battery Systems in Stationary Applications

Author:

Rauf Abdul Mannan123,Abdel-Monem Mohamed1,Geury Thomas23ORCID,Hegazy Omar23ORCID

Affiliation:

1. Research and Development (R&D) Unit, Powerdale (PWD), Witte Patersstraat 4, 1040 Brussel, Belgium

2. MOBI Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium

3. Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium

Abstract

Recently, multilevel converters (MLCs) have gained significant attention for stationary applications, including static compensators, industrial drives, and utility-grid interfaces for renewable energy sources. Compared to two-level voltage-source inverters (VSI) MLCs feature high-quality AC voltage with reduced harmonic content despite the lower switching frequency of the semiconductor devices. On the DC side, MLCs can integrate multiple isolated/non-isolated battery modules instead of a single battery pack. This helps to keep the system in service in case of a malfunction of one or more battery modules, as well as active balancing among the modules, a feature not possible with two-level VSI. In general, MLCs can be classified into two types: (i) two-port MLCs, which provide a single interface to connect with the battery pack, and (ii) multiport MLCs, which provide multiple interfaces to allow connection at the module or cell level. The classical topologies of both MLC types (e.g., neutral point clamped, flying capacitor, cascaded bridge) face limitations due to the high switch count. Consequently, many hybrid and reduced-switch topologies are reported in the literature. This paper presents a critical overview of both classical and recently reported MLC topologies and offers a better insight of MLC operation for grid-connected and standalone applications. In addition, the analysis thoroughly assesses various high-level control and modulation strategies while considering active balancing among the battery modules. Other salient features such as balancing speed during offtake/grid-injection mode and fault-ride-through capability are also incorporated. In conclusion, the key findings are summarized for a better understanding of the present and future integration of battery systems in stationary applications.

Funder

European Union’s Horizon Europe Programme and the National Authorities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3