Capacity Optimal Allocation Method and Frequency Division Energy Management for Hybrid Energy Storage System Considering Grid-Connected Requirements in Photovoltaic System

Author:

Li Wei1,Jin Ruixin1,Ma Xiaoyong2,Zhang Guozun1

Affiliation:

1. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300380, China

2. School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract

The coordination between a hybrid energy storage system (HESS) and photovoltaic (PV) power station can significantly reduce grid-connected PV power fluctuations. This study proposes a HESS capacity optimal allocation method considering the grid-connected PV requirements. Firstly, based on the power fluctuation requirements in the PV power station grid-connected regulations, the maximum power point tracking working point switching control is performed for the PV power station, from which the grid-connected PV power and HESS power are obtained. Then, a capacity optimal allocation method and frequency division energy management strategy (EMS) for HESS is proposed to find the energy response and power response of each energy storage source. Furthermore, a multi-objective optimization function with HESS cutoff frequency as the independent variable is constructed, and the input cost of HESS and the life loss of the lithium battery are optimized. Finally, the overall strategy is compared and analyzed under the scenarios of three typical PV power fluctuations. Simulation results show that the control strategy has a good smoothing effect on PV power fluctuations. From the perspective of the annual comprehensive input cost, HESS realizes the optimal capacity allocation when the cutoff frequency is 0.0066 Hz.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3