Performance Optimization of CsPb(I1–xBrx)3 Inorganic Perovskite Solar Cells with Gradient Bandgap

Author:

Wang Luning12,Yang Sui12,Xi Tingting12,Yang Qingchen12,Yi Jie3,Li Hongxing12,Zhong Jianxin12

Affiliation:

1. Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Faculty of Physics and Optoelectronic Engineering, Xiangtan University, Xiangtan 411105, China

2. Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, China

3. College of Chemistry, Xiangtan University, Xiangtan 411105, China

Abstract

In recent years, inorganic perovskite solar cells (PSCs) based on CsPbI3 have made significant progress in stability compared to hybrid organic–inorganic PSCs by substituting the volatile organic component with Cs cations. However, the cubic perovskite structure of α-CsPbI3 changes to the orthorhombic non-perovskite phase at room temperature resulting in efficiency degradation. The partial substitution of an I ion with Br ion benefits for perovskite phase stability. Unfortunately, the substitution of Br ion would enlarge bandgap reducing the absorption spectrum range. To optimize the balance between band gap and stability, introducing and optimizing the spatial bandgap gradation configuration is an effective method to broaden the light absorption and benefit the perovskite phase stability. As the bandgap of the CsPb(I1–xBrx)3 perovskite layer can be adjusted by I-Br composition engineering, the performance of CsPb(I1–xBrx)3 based PSCs with three different spatial variation Br doping composition profiles were investigated. The effects of uniform doping and gradient doping on the performance of PSCs were investigated. The results show that bandgap (Eg) and electron affinity(χ) attributed to an appropriate energy band offset, have the most important effects on PSCs performance. With a positive conduction band offset (CBO) of 0.2 eV at the electron translate layer (ETL)/perovskite interface, and a positive valence band offset (VBO) of 0.24 eV at the hole translate layer (HTL)/perovskite interface, the highest power conversion efficiency (PCE) of 22.90% with open–circuit voltage (VOC) of 1.39 V, short–circuit current (JSC) of 20.22 mA/cm2 and filling factor (FF) of 81.61% was obtained in uniform doping CsPb(I1–xBrx)3 based PSCs with x = 0.09. By carrying out a further optimization of the uniform doping configuration, the evaluation of a single band gap gradation configuration was investigated. By introducing a back gradation of band gap directed towards the back contact, an optimized band offset (front interface CBO = 0.18 eV, back interface VBO = 0.15 eV) was obtained, increasing the efficiency to 23.03%. Finally, the double gradient doping structure was further evaluated. The highest PCE is 23.18% with VOC close to 1.44 V, JSC changes to 19.37 mA/cm2 and an FF of 83.31% was obtained.

Funder

National Nature Science Foundation

Hunan Provincial Natural Science Foundation of China

Open Fund based on the Innovation Platform of Hunan Colleges and Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3