Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis

Author:

Malatesta Troy1,Li Qilin2,Breadsell Jessica K.1ORCID,Eon Christine1ORCID

Affiliation:

1. Sustainability Policy Institute, School of Design and Built Environment, Curtin University, Building 418 Level 4, Kent St., Bentley, WA 6102, Australia

2. School of Electrical Engineering, Computer and Math Science, Curtin University, Building 314 Level 4, Kent St., Bentley, WA 6102, Australia

Abstract

The home can be a complex environment to understand, as well as to model and predict, due to inherent variability between people’s routines and practices. A one-size-fits-all approach does not consider people’s contextual and institutional influences that contribute to their daily routines. These contextual and institutional factors relate to the household structure and relationship between occupants, as well as the working lifestyle of the occupants. One household can consume resources and live quite differently compared to a similar size household with the same number of occupants due to these factors. Predictive analysis of consumption data can identify this difference to create household-specific modelling to predict occupant routines and practices. Using post-occupancy data from the Fairwater Living Laboratory in Sydney that monitored 39 homes built in a green-star community, this research has utilised machine learning approaches and a K-Means clustering method complemented by t-distributed Stochastic Neighbour Embedding (t-SNE) to show how households follow different daily routines and activities resulting in resource consumption. This analysis has identified energy usage patterns and household groupings with each group following similar daily routines and consumption. The comparison between modelling the precinct as a whole and modelling households individually shows how detail can be lost when aggregating household data at a precinct/community level. This detail can explain why policies or technologies are not as effective as their design due to ignoring the delicate aspects of household routines and practices. These household groupings can provide insight for policymakers to help them understand the different profiles that may be present in the community. These findings are useful for net-zero developments and decarbonization of the built environment through modelling occupant behaviour accurately and developing policies and technologies to suit.

Funder

Australian Renewable Energy Agency

Curtin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference78 articles.

1. The Short List: The Most Effective Actions U.S. Households Can Take to Curb Climate Change;Gardner;Environment,2008

2. Communication from the commission-action plan for energy efficiency: Realising the potential;Commission;Brussels,2006

3. Characterization of the household electricity consumption in the EU, potential energy savings and specific policy recommendations;Fonseca;Energy Build.,2011

4. Energy productivity improvements and the rebound effect: An overview of the state of knowledge;Dimitropoulos;Energy Policy,2007

5. Steg, L., Gardner, G.T., and Stern, P.C. (2005). Environmental Problems and Human Behavior, Pearson Custom Publishing. [2nd ed.].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3