Affiliation:
1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2. Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, Xi’an 710054, China
Abstract
In a fully mechanized mining face, there is interference between the hydraulic support face guard and the shearer drum. The two collisions seriously affect coal mine production and personnel safety. The identification of a shearer drum can be affected by fog generated when the shearer drum cuts forward. It is hydraulic support face guard recovery, not the timely block shearer drum, that will also affect the recognition of the shearer drum. Aiming at the above problems, a shearer drum identification method based on improved YOLOv5s with dark channel-guided filtering defogging is proposed. Aiming at the problem of fog interference affecting recognition, the defogging method for dark channel guided filtering is proposed. The optimal value of the scene transmittance function is calculated using guided filtering to achieve a reasonable defogging effect. The Coordinate Attention (CA) mechanism is adopted to improve the backbone network of the YOLOv5s algorithm. The shearer drum features extracted by the C3 module are reallocated by the attention mechanism to the weights of each space and channel. The information propagation of a shearer drum’s features is enhanced by such improvements. Thus, the detection of shearer drum targets in complex backgrounds is improved. S Intersection over Union (SIoU) is used as a loss function to improve the speed and accuracy of the shearer drum. To verify the effectiveness of the improved algorithm, multiple and improved target detection algorithms are compared. The algorithm is deployed at Huangling II mine. The experimental results present that the improved algorithm is superior to most target detection algorithms. In the absence of object obstruction, the improved algorithm achieved 89.3% recognition accuracy and a detection speed of 48.8 frame/s for the shearer drum in the Huangling II mine. The improved YOLOv5s algorithm provides a basis for identifying interference states between the hydraulic support face guard and shearer drum.
Funder
Shaanxi Provincial Department of science and Technology
Shaanxi science and technology innovation team project
Coal Mine Electromechanical System Intelligent Measurement and Control Innovation Team Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献