Improving the Electrochemical Performance of Core–Shell LiNi0.8Co0.1Mn0.1O2 Cathode Materials Using Environmentally Friendly Phase Structure Control Process

Author:

Xu Lipeng1ORCID,Tian Chongwang1,Bao Chunjiang1,Zhao Jinsheng2ORCID,Leng Xuning3

Affiliation:

1. School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China

2. School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China

3. Shandong Yellow Sea Science and Technology Innovation Research Institute, Rizhao 262306, China

Abstract

The phase structure of the precursor is crucial for the microstructure evolution and stability of Ni-rich cathode materials. Using sodium lactate as a green complexing agent, cathode electrode materials with different phase structures and unique core–shell structures were prepared by the co-precipitation method in this study. The influence of the phase structure of the nickel-rich precursor on the cathode electrode materials was studied in depth. It was found that α-NCM811 had large interlayer spacing, which was beneficial for the diffusion of lithium ions. In contrast, β-NCM811 had smaller interlayer spacing, a good layered structure, and lower ion mixing, resulting in better cycling performance. The core–shell-αβ-NCM811 with α-NCM811 as the core and β-NCM811 as the shell was prepared by combining the advantages of the two different phases. The core–shell-αβ-NCM811 showed the highest discharge capacity of 158.7 mAh/g at 5 C and delivered excellent rate performance. In addition, the β-NCM811 shell structure with smaller layer spacing could prevent corrosion of the α-NCM811 core by the electrolyte. Thus, the capacity retention rate of the core–shell-αβ-NCM811 was still as high as 86.16% after 100 cycles.

Funder

National Science and Technology Support Plan

Liaocheng University Initiation Fund for Doctoral Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3