Food Web Structure and Trophic Interactions Revealed by Stable Isotope Analysis in the Midstream of the Chishui River, a Tributary of the Yangtze River, China

Author:

Qin Qiang,Zhang Fubin,Liu Fei,Wang Chunling,Liu Huanzhang

Abstract

Understanding energy flow and nutrient pathways is crucial to reveal the dynamics and functions of riverine ecosystems and develop appropriate conservation strategies. In this study, we utilized stable isotopes of δ13C and δ15N to examine the fundamental characteristics of trophic position, trophic niche, and carbon source for the food web in the midstream of the Chishui River, a tributary to the Yangtze River. Our results showed that stable isotope signatures among different sorts of basal resources and consumers were significantly distinguishable and that the food chain consisted of four trophic levels, indicating the multiple trophic pathways and long food chain length here. The trophic guilds of fish were classified into four categories, in which herbivorous and carnivorous fish showed greater trophic diversity and omnivorous fish had higher trophic redundancy, which meant that there was a stable trophic niche structure in the study area. Phytoplankton and periphyton presented the largest contributions to consumers, indicating that autochthonous productivity was the dominant carbon source in the midstream of the Chishui River. Since the Chishui River is still in a natural condition without any dam constructions, the autochthonous productivity, stable trophic niche structure, multiple trophic pathways and long food chain length found here demonstrate its high conservation value. Therefore, the strategy to refrain from damming on this river should persist into the future.

Funder

National Natural Science Foundation of China

China Three Gorges Corporation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3