High Performance Graph Data Imputation on Multiple GPUs

Author:

Zhou Chao,Zhang TaoORCID

Abstract

In real applications, massive data with graph structures are often incomplete due to various restrictions. Therefore, graph data imputation algorithms have been widely used in the fields of social networks, sensor networks, and MRI to solve the graph data completion problem. To keep the data relevant, a data structure is represented by a graph-tensor, in which each matrix is the vertex value of a weighted graph. The convolutional imputation algorithm has been proposed to solve the low-rank graph-tensor completion problem that some data matrices are entirely unobserved. However, this data imputation algorithm has limited application scope because it is compute-intensive and low-performance on CPU. In this paper, we propose a scheme to perform the convolutional imputation algorithm with higher time performance on GPUs (Graphics Processing Units) by exploiting multi-core GPUs of CUDA architecture. We propose optimization strategies to achieve coalesced memory access for graph Fourier transform (GFT) computation and improve the utilization of GPU SM resources for singular value decomposition (SVD) computation. Furthermore, we design a scheme to extend the GPU-optimized implementation to multiple GPUs for large-scale computing. Experimental results show that the GPU implementation is both fast and accurate. On synthetic data of varying sizes, the GPU-optimized implementation running on a single Quadro RTX6000 GPU achieves up to 60.50× speedups over the GPU-baseline implementation. The multi-GPU implementation achieves up to 1.81× speedups on two GPUs versus the GPU-optimized implementation on a single GPU. On the ego-Facebook dataset, the GPU-optimized implementation achieves up to 77.88× speedups over the GPU-baseline implementation. Meanwhile, the GPU implementation and the CPU implementation achieve similar, low recovery errors.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3